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We study, by means of computer simulations, some models of coupled map 
lattices (CML) with symmetry, subject to diffusive nearest neighbor coupling, 
with the purpose of providing a better understanding of the occurrence of Ising- 
type transitions of the type found by Miller and Huse. We argue, on the basis 
of numerical evidence, that such transitions are connected to the appearance 
of a minimum in the Lyapunov dimension of the system as a function of the 
coupling parameter. Two-dimensional CMLs similar to the one in Miller and 
Huse, but with no minimum in the Lyapunov dimension plot, have no Ising 
transition. The condition seems to be necessary, though by no means sufficient. 
We also argue, relying on the analysis of Bunimovich and Sinai, that coupled 
map lattices should behave differently, with respect to dimension, than Ising 
models. 

KEY WORDS: Coupled map lattices; Ising-type transitions; Lyapunov 
dimension; chaotic systems. 

0. I N T R O D U C T I O N  

Stud ies  o f  o r d e r  a n d  c h a o s  a n d  of  t r a n s i t i o n s  b e t w e e n  these  types  o f  

b e h a v i o r  in  f i n i t e - d i m e n s i o n a l  d y n a m i c a l  sys t ems  (a lso  ca l led  s o m e t i m e s  

" p o i n t "  o r  n o n e x t e n d e d )  h a v e  led to  a r i ch  se l f -cons i s ten t  theory .  (1-3) T h i s  

was  m a i n l y  d u e  to t he  e l a b o r a t i o n  of  exac t  ( m a t h e m a t i c a l )  de f in i t i ons  of  

such  s ta t i s t i ca l  p r o p e r t i e s  as e rgod ic i ty ,  w e a k  mix ing ,  m i x i n g ,  r a t e  of  decay  

o f  c o r r e l a t i o n s ,  B e r n o u l l i  p r o p e r t y ,  etc., a n d  o f  such  t o p o l o g i c a l  ( o r  

g e o m e t r i c a l )  ob j ec t s  as h o m o c l i n i c  a n d  he t e r oc l i n i c  p o i n t s ,  h o r s e s h o e s ,  
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etc., that ensure some kind of complex "behavior" of the corresponding 
dynamical systems. 

The modern theory of chaos relies essentially on examples of model 
systems for which these properties or objects can be rigorously proven 
to exist. The theory of bifurcations provides the tools for studying trans- 
itions between different types of local or global behavior in dynamical 
systems j4. 5~ The results of the theory have found extensive applications and 
have even allowed "scenarios of transitions to turbulence ''t~) where by 
"turbulence" one means basically some kind of chaotic motion in time 
only. 

The general notions of turbulence, space-time chaos, coherent struc- 
tures, and intermittency have long been applied in analyzing experimental 
results of the motion of extended media, especially fluid flows, with 
remarkable success. An extensive theory has also been developed, t7-9) 
but, surprisingly, without exact definitions of some basic concepts and 
phenomena. This theory is essentially a collection of some explicit phenom- 
enological results concerning special classes of models of extended media 
(extended dynamical systems). As examples we can quote the celebrated 
Kolmogorov theory of homogeneous isotropic turbulence <7) and the 
numerous works on the theory of hydrodynamic stabilityJ ~~ 

The situation began to change quite recently with the introduction of 
new classes of extended dynamical systems that have been called coupled 
map lattices (CMLs) <~). These systems describe the evolution of a finite or 
infinite number of interaction "point" (finite-dimensional) dynamical 
systems located at the sites of some lattice in a "physical" space. Thus the 
CMLs form a class of coupled oscillator systems in which each oscillator 
is characterized not only by its (internal) state, but also by its (fixed) coor- 
dinate in space. Such systems were considered before the name coupled 
map lattices was invented. <~2~ By introducing a general "abstract" class of 
extended dynamical systems it became possible to give a precise definition 
of the phenomenon of space-time chaos t~3~ and to prove its existence in 
some classes of CMLs. tl4) Moreover, in ref. 13 the first definition of 
coherent structure was given, and it was proposed that such structures can 
emerge in CMLs if the strength of the space interaction (order parameter) 
increases. 

The definition of coherent structure in ref. 13 relies on a exact 
representation of extended dynamical systems (CMLs) as lattice spin 
systems of statistical mechanical type. The existence of space-time chaos 
in CMLs was proven for weakly interacting, strongly chaotic (local) dyna- 
mical systems on the lattice. <x3' ~7. ~8) In ref. 13 this result was obtained 
by connecting space-time chaos to the absence of phase transitions in 
lattice spin systems of statistical mechanical type. That is, only one 
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phase (space-time chaos) emerges in the range of weak space interactions 
that corresponds to the range of high temperatures in a dual lattice spin 
system. It is important to observe that while the one-dimensional lattice 
spin systems correspond to finite-dimensional (nonextended) dynamical 
systems (see, e.g., refs. 19 and 20), the dimension of the spin systems 
corresponding to CMLs equals at least two. Thus in such systems phase 
transitions can be expected to occur for one-dimensional lattices also. 

The emergence of new phases can be naturally interpreted as the 
appearance of coherent structures in the corresponding extended dynamical 
system (CML). Such phase transitions, as usual for dynamical systems, can 
be described by bifurcations that appear when the parameters of the space 
interaction vary, and produce a transition from space-time chaos to some 
more organized type of motion. These ideas were confirmed by various 
computer simulations ~2~-24) and some analytical studies. (26"27) 

One should note, however, that the transitions found, for example, in 
refs. 21-24 for CMLs of logistic maps interacting on the one-dimensional 
lattice do not resemble the phase transitions known in statistical mechanics. 
This fact is not surprising, since the lattice spin systems that correspond to 
CMLs are essentially nonisotropic, as one of the dimensions corresponds to 
the dynamics in time and all other dimensions to space. A natural question 
is, however, whether or not CMLs can show the same type of phase transi- 
tions as the classical models of statistical physics, and first of all as the Ising 
model. 

A positive answer to this question was obtained recently by Miller and 
Huse, t28) who have found Ising-type phase transitions in a two-dimensional 
square lattice of diffusively coupled piecewise linear expanding maps, 
symmetric with respect to reflection. The one-dimensional CML of the 
same local maps with analogous coupling does not show such types of 
transitions. This result was used in ref. 28 to argue that phase transitions 
analogous to those in the lattice models of statistical physics can occur 
in CMLs, but again starting with dimension 2. It would seem that the 
difference between extended and nonextended dynamical systems pointed 
out in ref. 13 does not exist for one-dimensional CMLs, or is anyhow 
inessential. 

The aim of the present paper is to provide a deeper understanding of 
Ising-type transitions for CMLs, by pointing out some characteristic 
features which ace due to the fact that such systems are extended in space 
and time. We argue that in order to have such transitions there should be 
some "balance" between the local production of chaos (nonlinearity) and 
the diffusion strength (dissipation), which can be expressed by the behavior 
of the Lyapunov dimension. The balance that is needed seems to 
correspond to the presence of a minimum of the Lyapunov dimension as 
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a function of the coupling (diffusive) strength. We show that two-dimen- 
sional lattices of coupled maps with "Ising symmetry" very similar to the 
one considered in ref. 28, but such that the Lyapunov dimension does not 
decrease by increasing the coupling parameter, can fail to have Ising-type 
(and even any "interesting") phase transitions. 

We believe that one-dimensional CMLs, as systems which are 
extended in time and space, should also provide Ising-type phase transi- 
tions, though we are unable for the moment to provide numerical evidence 
to that effect. We briefly report, however, the numerical results for a one- 
dimensional CML which shows the appropriate behavior of the Lyapunov 
dimension, and seems to get "close" to an Ising-type transition. It can be 
considered as a starting point for further efforts to find evidence of 
Ising-type transitions in one-dimensional CMLs. 

The search for more stringent conditions on the appearance of Ising- 
type transitions would require the study of the leading modes, and is a 
subject for further study. 

The paper is divided into three sections. The first section is devoted to 
the description of the models. In the second section we report the computer 
results on the three-piece map studied in ref. 28, with special attention to the 
Lyapunov dimension and to space-inhomogeous states. In the third section 
we report results on models that do not exhibit Ising-type transitions. 

Computation of the Lyapunov exponents has been done along the 
lines proposed in ref. 32. 

1. DESCRIPTION OF THE MODEL 

We consider CMLs on a finite d-dimensional square lattice generated 
by diffusion-type coupling of local (point) dynamical systems. The local 
systems always belong to the class of one-dimensional maps f of the inter- 
val I = [ - 1, I ] into itself with the further property that f is continuous 
and piecewise linear. 

The phase space of our CML is 

~"~(N d ) :  {X = {X k ~ I: k ~ (7/N)a} } (1.1) 

where 77N= 7//(NZ) denotes the integers considered modulo N. On I2~ ) we 
consider the maps ~ ,  and F with values in g2~ ) and defines as 

(~ .X)k  = (1 - -g)  Xk"]- ~ Z al[J- kllXj (1.2a) 
j e (Z~) d 

Fk(X) = f(Xk) (1.2b) 
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Here e~(O, I ] ,  IlJll- a - Y.j= 1 IJA, where Jt are the components of the vector 
j, and Y'.j a IlJll = 1. 

The dynamics of the coupled map lattice is given by the composition 

H ~ = ~ o F  (1.3) 

i.e., by the successive action of the local map F and the coupling ~ .  
Clearly 

(H~X)k=(1--e.) f(Xk)+e ~'~ allj_kllf(Xj) ( 1 . 4 )  
j ~ (Z~v) a 

The CMLs under consideration can be described as an array of one- 
dimensional continuous piecewise linear maps, on the periodic d-dimensional 
lattice (ZN)", which interact diffusively. 

- i  ~ -0 .33  ~ C.33 ~. l 

a '~ - ]~- '= 

Fig. I. The three maps studied in this paper. (a) The map denoted in the text f3, ( b ) f s ,  
and (c) fi 
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We consider CMLs with nearest neighbor coupling, i.e., 

e ~ xi (1.5) 
(~X)k  - - - - -  ( 1 --e) x k +~-~ IlJ-kll = 1 

In fact most numerical studies of CMLs were done for nearest neighbor 
coupling. 

The CML corresponding to the map f in dimension d and to the 
coupling (1.5) will be denoted by H(~ ). 

We report computer simulations for the three maps shown in Figs. 
la-lc.  They are denoted as f3, f5 and f. The maps f3 and f5 have a slope 
of constant absolute value, equal to 3 and 5, respectively. They can be 
considered as a generalization of the popular "tent maps." Lattices of tent 
maps with nearest neighbor diffusive coupling were considered in ref. 31. 
No interesting phase transitions, and in particular no Ising-type transi- 
tions, were found. 

- ]  g - 0 . 6  ~ - 0 . 2  ~ 0 .~  

t / 

: b  

, // 
J 

%. 0 6 u i 

Fig. 1 (continued) 
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Maps similar to f3 and f5 were studied, with different aims, in refs. 29 
and 30. 

The linearization of the maps ~(d) . . : , . , ,  S=3,  5, at a point x =  {xi}i~(z:,/ 
has a particulaxly simple expression. For d = 1 it is expressed by the matrix 
sA(x), with 

( l - e )  ~o �89 0 --- 0 ~e , 

A(x)=  �89 ( 1 - e )  G, �89 "'" 0 Gg ) 
�89 0 0 ' �9 "" ~ G u - 2  ( 1 - ~ ) G u _ ~ /  

(1.6) 

Here ~k = Gu(X)= sign(f'(xk)) is the sign of the derivative of the map 
computed at the point Xk. A similar formula holds for d > 1, with the only 

- I  #' I - 0 . 2  o.2 ..... " ;'b:'6'~ \ 1 
. . /  :' k 

/ / ":: . . . . . . . . . .  
. / "  '-..\ 

l"  

.J  

Fig. l (continued) 
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difference that the entries of A will be labeled by the points of (7/N)a. Such 
formulas simplify the computation of the Lyapunov exponents. 

We usually choose the initial data Xk(O), k e (7-N) a, as realizations of 
independent (in k) random variables. In most cases they are realizations of 
the same random variable ~, uniformly distributed in the interval ( -  1, 1 ), 
a situation which we describe concisely by the expression "symmetric 
random initial data." Sometimes the random variable ~ is uniformly dis- 
tributed in (0, 1) or in ( - 1 ,  0), in which case we speak of positive or 
negative random initial data. The adjective random may be omitted. 

For the space average (which is a natural empirical order parameter) 
and the empirical dispersion we shall use the notation 

X ( t ) = ~  Xk(t) 

D( t )=~ ~ [Xk(t)-- X(t)] 2 

(1.7) 

(].8) 

2. THE C M L  u(z )  I #  f3,1E 

The CML T4(2) is essentially the same as the one studied in ref. 28 and 
a a  f 3 , ~  

it is known from that paper that it exhibits Ising-type transitions. Our 
results locate the critical value ec around the value 0.81, in accordance with 
the result of ref. 28. 

Most simulations were done on the square lattice N x  N, for N =  I00, 
with periodic boundary conditions. N is, however, always indicated in the 
figure captions. 

2.1. Subcr i t ica l  �9 

For e < ec there is a unique chaotic regime, and the attractor is sym- 
metric with respect to the origin (under the exchange x ~ -x). X(t) tends, 
as t ~  o% to values of the order 1/N exponentially fast. D(t) behaves 
similarly and tends to a value which is around 0.25. 

Figure 2a shows the behavior of X(t) for e = 0.3, for t up to 5 units 
and positive random initial data. Figure 2b shows the occupation number 
histogram for large time ( t =  104). The histogram is constructed by 
dividing the interval I into small cells (cell positions between - 1  and 1 are 
on the horizontal axis), and reporting on the vertical axis the occupation 
number of each cell, i.e., how many variables xk take values in the cell. 
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Fig. 2. The CML with map f3 on the 100 x 100 periodic square lattice at e =  0.3. (a) The 
falloff of log X(t) in the first few time units for positive random initial data. (b) The occupa- 
tion number histogram (described in the text) at a given large time. 
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Fig, 3. The CML with map f3 on the 100 x 100 p~riodic square lattice at e =0,6. (a) The 
behavior of X(t) and D(t) up to 40 time units for positive random initial data. (b) The 
occupation number histogram at a given large time. 
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For  values of  e a round 0.4 some change takes place. The occupation 
number histogram gets depressed in the middle, forming a marked two- 
bump profile, with maxima around ___0.4. Moreover,  X(t) relaxes to 0 very 
slowly, apparently as an inverse power. 

Figure 3a shows the behavior of  X(t) and D(t) for positive random 
initial data and e = 0.6. Figure 3b shows the occupat ion number  histogram 
at t = 104. 

The chaotic regime, with a space-homogeneous stationary state, per- 
sists up to e ~ 0.8. As e grows, the two-bump profile of  the occupation 
number histogram, with peaks around __+ 0.4, gets enhanced. 

2.2.  T h e  T r a n s i t i o n  a n d  t h e  T w o - P h a s e  R e g i o n  

We have not examined in detail the behavior near the critical point, 
as it was extensively done in ref. 28, where the critical exponents were also 
computed. The interested reader is referred to that paper. We only report 
in Fig. 4 the behavior of  the space average X(t) for e = 0.80. The regime of 
large oscillations a round zero is of  course due to the fact that the correla- 
tion length is no longer negligible with respect to N. 

Fig. 4. 

.6 

.5 

.4 

.3 

o x(t) 

+ D(t) 

%* 
o OC~o cp 

o~176 = Oo 

- . 1  I I l I ! 

0 2000 4000 6000 6000 10000 

time 

The CML with map ./3 on the 100 x I00 periodic square lattice at e=0.8: behavior 
of X(t) and D(t) up to 10,000, for positive random initial data. 
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F o r  e > ec two  symmet r i c  t r ans l a t ion - inva r i an t  s tates appear ,  which  we 

deno te  by/~_+, and  are  re la ted  by the s y m m e t r y  x ~ - x .  F o r  symmet r i c  

r a n d o m  init ial  d a t a  the ave rage  X(t), after  s o m e  osci l la t ions ,  tends  in m o s t  

cases to a defini tely n o n z e r o  a sympto t i c  value,  which  can  be _ c, wi th  c 

close to 0.4. The  reason  why  it does  no t  tend  a lways to the  va lues  corre-  

spond ing  to the s ta tes /x  _+ is the presence  of  s p a c e - n o n h o m o g e n e o u s  states,  

which are  discussed below. The  t ime averages  o f  the var iables  Xu are  inde-  
penden t  o f  k and  close, for large t imes,  to + c  (for p •  respect ively) .  

F igu re  5a gives the  b e h a v i o r  of  X(t) and D(t) for symmet r i c  r a n d o m  

init ial  d a t a  and  c = 0.84. O n e  can see that ,  as t ime  grows ,  X(t) depar t s  f rom 

0 and  assumes  a va lue  a r o u n d  + c. 
F igure  5b gives the densi ty  plots  on  the lat t ice (ZN) 2 at a t ime 

(t = 10 4) m u c h  larger  than  the re laxa t ion  t ime,  for a run  which  tends  to the 

state / z_ .  The  p lo t  is ob t a ined  as follows: at each  site k E (7/N)2 a small  

square  is co lo r ed  wi th  different shades  o f  grey,  a cco rd ing  to the va lue  of  xk ,  

va ry ing  f rom black for xk = - 1  to whi te  for x~ = 1. 

.4 

.35 

.3 

.25 

.2 

.15  

.1 

.05 

0 

- . 0 5  

a 

c•oOO: c p oO 

o q, 
O 

0 
, ~ . . .  + .ooo * x(t) 

I I I I I 

0 2 0 0 0  4 0 0 0  6 0 0 0  8 0 0 0  10000 

t ime 

Fig. 5. The CML with map f3 on the 100 • 100 periodic square lattice at ~ = 0.84. (a) The 
behavior of X(t) and D(t) up to t = 10, 000. for symmetric random initial data. (b) The den- 
sity plot on the square lattice for another run with symmetric random initial data, which tends 
to the attractor corresponding to/~_. The plot is taken at time t = I0, 000, and is obtained 
by coloring the unit squares with centers at the lattice sites with different shades of grey, going 
from white for xk = 1 to black for Xk = --1. 
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Fig. 5 (conthlued) 

2.3. L i f e t ime  of a St r ip  

For e>ec  some runs tend rather slowly to the pure phases, going 
through some nonhomogeneous situations in which the two phases /x + 
coexist in two regions separated by interface lines which are roughly 
parallel to one of the coordinate axes. In order to understand how long 
they actually persist, we made a computer simulation as follows. We take 
random initial data that are positive for kE~(N/2, N] and negative for 
k 2 e (0, N/2],  a situation which leads very quickly to two horizontal strips 
with different phases. The lifetime of the strips is computed by stopping the 
run at the first time T(N) when the absolute value of the average X(t) gets 
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14- 

12- 

log(T) 1 0 -  

- -  - . . 3 x 

8 

6 J i i i 

3.5 4 4.5 5 

log(;V) 
Fig. 6. Behavior of the lifetime of a strip of width N/2 as a function of N. The error bars 
correspond to two standard errors, and different values of N have different statistics, going 
from a sample of 400 to 15 (for N =  110). 

over 0.3. For  the value E = 0.94 that we consider the average of  X(t) lies in 
absolute value between 0.38 and 0.39. 

Figure 6 shows the plot of  log[ T(N)]  versus log N . A  behavior of  the 
type T ( N ) ~  const N ~ with a ,~ 3.75 seems to fit well. For  the Ising model 
with Glauber dynamics one would expect a = 3, hence our  results indicate 
that that  for our  CML the coexistence of  phases is more persistent. 

The situation is not entirely clear, as, for instance, a behavior of  
l o g [ T ( N ) ]  of the type cl + c2N ~', where cl and c2 are constants and 7 is 
between I/4 and 1/2 (for instance, - 1 . 7  + 3N ~/3) fits our data almost as 
well. More work, and more data, are needed in order to get a better under- 
standing of  this important  point. 

The two homogeneous phases p + persist up to e = 1. 

2.4. Behavior of the Lyapunov Dimension 

Figure 7 shows the behavior of the Lyapunov dimension as a function 
of  e. We extend for convenience the definition of Lyapunov dimension to 
the case when there are no negative Lyapunov exponents, by setting it 
equal to the full dimension. One can clearly see that there is a neat mini- 
mum near the critical value ec. 
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Fig. 7. The C M L  with map  ./3 on the 23 x 23 periodic square lattice: Lyapunov dimension 
as a function of e. 

3. EXAMPLES OF M A P S  T H A T  DO NOT HAVE 
IS ING-TYPE T R A N S I T I O N S  

3.1. The C M L  t4~2) 
" "  f s , ~  

Though two-dimensional, this map does not show any significant 
transition, in particular no Ising-type transitions. Positive and negative 
values of the spins seem to be present in equal amounts in the asymptotic 
(in time) states obtained both from negative and from positive random 
initial data. X(t) relaxes to values close to 0 for all initial data. 

Figure 8a shows the behavior of X(t) and D(t) at e=0.8,  for positive 
random initial data. For other values of e the behavior is similar. 

Figure 8b gives the density plots at t = 10 4 for the same run. The two 
bumps in the occupation number histogram also never appear. Figure 8c 
shows the histogram again at e = 0.8. As e increases from 0 to 1 the occupa- 
tion number plot, only changes in that the peak around 0 becomes sharper. 
Also the density plots differ only in that for small e they show a "finer 
grain." 

The plot of the Lyapunov dimension as a function of e is completely 
flat, i.e., the Lyapunov dimension is equal to the full dimension N 2 for all 
~ [ 0 ,  I].  
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Fig. 8. The CML with map f5 on the 100 x 100 periodic square lattice at e=0.8. (a) The 
behavior of X(t) and D(t) up to 40 time units for positive random initial data. (b) the density 
plot at time t = 10, 000. (c) The corresponding occupation number histogram. 

3.2.  T h e  C M L  H (1) 
f .  ,= 

The map  f is shown in Fig. lc. We give here for better reference its 
analytic expression (only for the positive half-interval, as the map  is 
antisymmetric).  For  D = 1/I00 and K =  - I / 4 5  we have 

I 5x 0 <~x~<~ 

5 3 - 5 D  1 3 
| -  2_-5z)~+ ~ - ~  ~<~<~-D 
~ K  ( 3 )  3 3 

f ( x ) =  ~ x + K  1-~--~  ~-D<~x<~-~ 

-g<~x<.~+D 
5 3 + 5 D  3 

~+ ~<x~< ~ ~--2~ x - ~ - - ~  D 1. 

(3.1) 

Compute r  simulations are done for values of  N ranging between 500 and 
2000. 
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Fig. 9. The one-dimensional CML with mapf .  (a) The typical asymptotic (in time) occupation 
number histogram. The length of the periodic lattice is N =  2000, and e = 0.15. (b) The behavior 
of N m  2 as a function of t, where rn 2 is the average of the square of the magnetization M, defined 
as M =  (l/N)Z~v= t sign x~, over a sample of 100 independent runs with symmetric random 
initial data. The upper and lower bounds correspond to the standard error of m 2. The time at 
which the magnetization is computed and the value of N are chosen for each t separately. We 
first compute the asymptotic behavior in t for fixed N and then increase N until an asymptotic 
behavior is reached. (c) The Lyapunov dimension as a function of e for N =  500. 
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This particular CML was considered to be a good candidate for a one- 
dimensional CML exhibiting Ising-type transitions. However, it appears 
that it only gets "very close" to that. For small e there is a unique chaotic 
regime, the attractor is symmetric for sign change, and there are no bumps 
in the occupation number histogram. As e increases, the two-bump 
structure appears, as shown in Fig. 9a, and relaxation is slow. However, it 
appears that the correlation length gets only very long (of the order of 
thousand of units), but does not diverge. Figure 9b shows the behavior of 
the inverse of N(m 2) as a function of e, where m=(I/N)~'~kXk is the 
average magnetization, and the average ( . )  is taken over a sample of 100 
independent runs. The sample length N is adjusted in such a way that it is 
always larger than the double of the correlation length. This is checked by 
looking at the stabilization of N(m 2) when N is increased. 

On the basis of the behavior of the Lyapunov dimension, shown by 
Fig. 9c, one would expect a critical value around in the range e e (0.55, 0.6). 
However, Fig. 9b shows that the function ( N ( m 2 ) )  -1 at first decreases in 
the right way, but then fails to tend to 0, as e grows and gets near to where 
the critical valueshould be. 

4. C O N C L U S I O N S  

The results of the present paper show that the "Ising-type symmetry" 
of the local maps does not ensure the existence of Ising-type phase 
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transitions in the corresponding CML with nearest neighbor diffusive 
coupling, in contrast to what one would think on the basis of usual 
physical arguments, such as one can find in ref. 28. 

In fact Ising-type behavior (after transition) in extended dynamical 
systems (as CMLs are) is an example of persistent space-time intermittency, 
and it appears to be the result of some subtle interplay between the local 
production of chaos and the spatial diffusion, the processes that govern the 
dynamics of the class of coupled map lattices that we consider. The exact 
character of the bifurcations that lead to the transition from space-time 
chaos (which is proven to exist in such CML for small coupling (2~' 27~) to 
the (partially) ordered states after bifurcation is still unclear. 

Our results point out that coupled map lattices can have a richer 
variety of behavior than the lattice spin systems of statistical mechanics, 
and provide some of the (maybe simplest) examples of how Ising-type 
transitions can fail to appear in one-dimensional CMLs, though this 
important question needs more work to be fully clarified. 

The task of providing rigorous proofs and of getting a better under- 
standing of the exact mechanism of Ising-type and other chaos-order 
transitions in CMLs will be the subject of further studies. 
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